Волновая теория фотона
;
.
Если фотон движется относительно неподвижной системы отсчета ХОУ со скоростью , то уравнения такого движения становятся уравнениями циклоиды:
;
.
Обратим внимание на то, что в уравнениях png">и . Это значит, что они описывают движение центра масс фотона по волновой траектории в рамках аксиомы Единства пространства – материи – времени. Отметим, что уравнения Луи Де Бройля и Шредингера этим свойством не обладают. Учитывая соотношения, получим:
где .
Представим траектории точек . Обратим внимание на важные особенности. Радиус кольца равен и точка , лежащая на кольце, описывает обыкновенную циклоиду М.
Радиус окружности, описываемой точкой , - и эта точка описывает удлинённую циклоиду(рис. 1).
Рис. 1. Траектории движения точек , представленных на рис. 15:
М – обыкновенная циклоида; N – удлинённая циклоида; К – укороченная циклоида;
Радиус окружности, описываемой точкой (рис. 1), , и она описывает укороченную циклоиду .
Так как у модели фотона амплитуда , то его центр масс движется по укороченной циклоиде.
Результаты табл. 1 требуют, чтобы математическая модель, описывающая скорость центра масс шестигранника, а значит и фотона, не зависела бы от его радиуса вращения. Уравнения автоматически дают такой результат
Если считать, что движение фотона эквивалентно движению шестигранника, то и получаем закономерность изменения скорости центра масс фотона, в которую легко вводятся электрическая и магнитная постоянные
График скорости центра масс фотона показан на рис. 2, а.
Как видно, скорость центра масс фотона действительно изменяется в интервале длины волны или периода колебаний таким образом, что её средняя величина остается постоянной и равной .