Ультразвуковая размерная обработка
Одним из наиболее интересных и перспективных промышленных применений ультразвука является процесс, получивший название ультразвуковой размерной обработки или ультразвукового резания.
Ультразвуковое резание было открыто более 50 лет назад американским инженером Л.Бэлемут. Исследуя дробление ультразвуком абразивных порошков, он обнаружил, что приближение колеблющегося торца рабочего инструмента излучателя к поверхности сосуда, в котором находилась суспензия абразива, приводит к разрушению поверхности в месте контакта. Выяснилось, что таким способом легко разрушаются все хрупкие материалы - стекло, керамики, твердые сплавы, драгоценные и поделочные камни и минералы. Особенно важным оказался тот факт, что форма полученного углубления весьма точно повторяет рельеф и форму рабочего инструмента излучателя.
Способ ультразвуковой обработки быстро нашел промышленное применение и уже в начале шестидесятых годов в различных странах начали появляться промышленные образцы ультразвуковых станков.
Обусловлено это было тем, что ультразвуковой способ удачно дополнил известную группу немеханических способов обработки - электроэрозионный, электрохимический, электронно-лучевой, лазерный и химический.
С его помощью удается существенно упростить и ускорить процесс изготовления фасонных деталей из твердых и хрупких материалов. Так например, в сотни раз повышается производительность вырезания пластин любой формы из различных керамик, полупроводниковых материалов, появляется возможность выполнять отверстия любой формы, упрощается технология изготовления матриц и пуансонов из твердых сплавов.
В ходе многочисленных исследований удалось установить, что совершая колебательные движения, рабочий инструмент периодически ударяет по зернам абразива. Под действием этих ударов под частицами абразива образуются трещины и выколы.
Полученные результаты показали, что разрушение хрупкого материала происходит только в случае прямого удара рабочего инструмента по частицам абразива, контактирующего в свою очередь с обрабатываемой поверхностью. В тех случаях, когда инструмент ударяет по частице абразива, взвешенной в жидкости, разрушение стекла не наблюдалось, хотя частица ударялась о поверхность со скоростью, близкой к колебательной скорости торца рабочего инструмента.
Применение абразивных суспензий, приготовленных на воде и глицерине свидетельствует о том, что скорость ультразвуковой обработки при использовании глицерина значительно меньше, чем при использовании воды. Объясняется это тем, что скорость потоков, возникающих в рабочем зазоре, а следовательно, и скорость движения частиц уменьшается с ростом вязкости используемой жидкости, а возникающие потоки играют определяющую роль в подаче абразивной суспензии в зону обработки, выносе выколотых частиц и измельченного абразива.
Современные представления о механизме ультразвуковой обработки свидетельствуют о том, что она сводится к двум различным по своей природе явлениям: образованию выколов при ударе инструмента по частицам абразива и перемещению выколотых частиц обрабатываемого материала и разрушенного абразива под действием ультразвуковых колебаний. Второй процесс обеспечивает подачу абразива и удаление отработанного абразива и снятого материала.