Ультразвук как упругие волны
УЗ-вые волны (неслышимый звук) по своей природе не отличаются от упругих волн слышимого диапазона. В газах и жидкостях распространяются только продольные волны, а в твердых телах – продольные и сдвиговые.
Распространение ультразвука подчиняется основным законам, общими для акустических волн любого диапазона частот.
К основным законам распространения относятся законы отражения звука и преломления звука на границах различных сред, дифракции звука и рассеяния звука при наличии препятствий и неоднородностей в среде и неровностей на границах, законы волноводного распространения в ограниченных участках среды.
Существенную роль при этом играет соотношение между длиной волны звука l и геометрическим размером D – размером источника звука или препятствия на пути волны, размером неоднородностей среды. При D>>l распространение звука вблизи препятствий происходит в основном по законам геометрической акустики (можно пользоваться законами отражения и преломления). Степень отклонения от геометрической картины распространения и необходимость учета дифракционных явлений определяются параметром , где r – расстояние от точки наблюдения до объекта, вызывающего дифракцию.
Скорость распространения УЗ-вых волн в неограниченной среде определяется характеристиками упругости и плотностью среды. В ограниченных средах на скорость распространения волн влияет наличие и характер границ, что приводит к частотной зависимости скорости (дисперсия скорости звука).
Уменьшение амплитуды и интенсивности УЗ-вой волны по мере ее распространения в заданном направлении, то есть затухание звука, вызывается, как и для волн любой частоты, расхождением фронта волны с удалением от источника, рассеянием и поглощением звука. На всех частотах как слышимого, так и неслышимых диапазонов имеет место так называемое «классическое» поглощение, вызванное сдвиговой вязкостью (внутренним трением) среды. Кроме того, существует дополнительное (релаксационное) поглощение, часто существенно превосходящее «классическое» поглощение.
При значительной интенсивности звуковых волн появляются нелинейные эффекты:
· нарушается принцип суперпозиции и возникает взаимодействие волн, приводящее к появлению тонов;
· изменяется форма волны, ее спектр обогащается высшими гармониками и соответственно растет поглощение;
· при достижении некоторого порогового значения интенсивности УЗ в жидкости возникает кавитация (см. ниже).
Критерием применимости законов линейной акустики и возможности пренебрежения нелинейными эффектами является: М << 1, где М = v/c, v – колебательная скорость частиц в волне, с – скорость распространения волны.
Параметр М называется «число Маха».