Открытия в области звуковых колебаний
Звуки начали изучать ещё в далёкой древности. Первые наблюдения по акустики были проведены в VI веке до нашей эры. Пифагор установил связь между высотой тона и длиной струны или трубы издавающей звук.
В IV в. до н.э. Аристотель первый правильно представил, как распространяется звук в воздухе. Он сказал, что звучащее тело вызывает сжатие и разрежение воздуха и объяснил эхо отражением звука от препятствий.
В XV веке Леонардо да Винчи сформулировал принцип независимости звуковых волн от различных источников.
В 1660 году в опытах Роберта Бойля было доказано, что воздух является проводником звука (в вакууме звук не распространяется).
В 1700 - 1707 гг. вышли вышли мемуары Жозефа Савёра по акустике, опубликованные Парижской Академией наук. В этих мемуарах Савёр рассматривает явление, хорошо известное конструкторам органов: если две трубы органа издают одновременно два звука, лишь немного отличающиеся по высоте, то слышны периодические усиления звука, подобные барабанной дроби. Савёр объяснил это явление периодическим совпадением колебаний обоих звуков. Если, например, один из двух звуков соответствует 32 колебаниям в секунду, а другой - 40 колебаниям , то конец четвёртого колебания первого звука совпадает с концом пятого колебания второго звука и, таким образом происходит усиление звука. От органных труб Савёр перешёл к экcпирементальному исследованию колебаний струны, наблюдая узлы и пучности колебаний (эти названия, существующие и до сих пор в науке, введены им), а также заметил, что при возбуждении струны наряду с основной нотой звучат и другие ноты, длина волны которых составляет 1/2, 1/3, 1/4, . от основной. Он назвал эти ноты высшими гармоническими тонами, и этому названию суждено было остаться в науке. Наконец, Савёр первый пытался определить границу восприятия колебаний как звуков: для низких звуков он указал границу в 25 колебаний в секунду, а для высоких - 12 800.
За тем, Ньютон, основываясь на этих экспериментальных работах Савёра, дал первый расчет длины волны звука и пришел к выводу, хорошо известному сейчас в физике, что для любой открытой трубы длина волны испускаемого звука равна удвоенной длине трубы. "И в этом состоят главнейшие звуковые явления".
После экспериментальных исследований Савёра к математическому рассмотрению задачи о колеблющейся струне в 1715 г. приступил английский математик Брук Тейлор, положив этим начало математической физике в собственном смысле слова. Ему удалось рассчитать зависимость числа колебаний струны от её длины, веса, натяжения и местного значения ускорения силы тяжести. Эта задача сразу же стала широко известна и привлекла внимание почти всех математиков XVIII века, вызвав долгую и плодотворную дискуссию. Ею занимались среди прочих Иоганн Бернулли и его сын Даниил Бернулли, Риккати и Даламбер. Последний нашел уравнения в частных производных, определяющие малые колебания однородной струны, и проинтегрировал их методом, применяемым и поныне. Но наиболее существенный вклад внес Эйлер. Ему мы обязаны полной теорией колебаний струны, начало построению которой было положено в 1739 году в его труде "Опыт новой теории музыки" и продолжалось в многочисленных последующих докладах. В частности, из теории Эйлера вытекало, что скорость распространения волны по струне не зависит от длины волны возбуждаемого звука. Эйлер производил также теоретические исследования колебаний стержней, колец, колоколов, но полученные результаты не совпали с результатами экспериментальной проверки, предпринятой немецким физиком Эрнестом Флоресом Фридрихом Хладни, которого считают отцом экспериментальной акустики. Хладни первым точно исследовал колебания камертона и в 1796 году установил законы колебаний стержней.