Определение поперечных сил и изгибающих моментов

Материалы о физике / Основы сопротивления материалов / Определение поперечных сил и изгибающих моментов

Как уже было сказано, при плоском поперечном изгибе в поперечном сечении балки возникают два внутренних силовых фактора и .

Перед определением и определяют реакции опор балки (рис. 6.3, а), составляя уравнения равновесия статики.

Для определения png"> и применим метод сечений. В интересующем нас месте сделаем мысленный разрез балки, например, на расстоянии от левой опоры. Отбросим одну из частей балки, например правую, и рассмотрим равновесие левой части (рис. 6.3, б). Взаимодействие частей балки заменим внутренними усилиями и .

Установим следующие правила знаков для и :

· Поперечная сила в сечении положительна, если ее векторы стремятся вращать рассматриваемое сечение по часовой стрелке;

· Изгибающий момент в сечении положителен, если ое вызывает сжатие верхних волокон.

Рис. 6.3

Для определения данных усилий используем два уравнения равновесия:

1. ; ; .

2. ;

;

Таким образом,

а) поперечная сила в поперечном сечении балки численно равна алгебраической сумме проекций на поперечную ось сечения всех внешних сил, действующих по одну сторону от сечения;

б) изгибающий момент в поперечном сечении балки численно равен алгебраической сумме моментов (вычисленных относительно центра тяжести сечения) внешних сил, действующих по одну сторону от данного сечения.

При практическом вычислении руководствуются обычно следующим:

1. Если внешняя нагрузка стремится повернуть балку относительно рассматриваемого сечения по часовой стрелке, (рис. 6.4, б) то в выражение для она дает положительное слагаемое.

2. Если внешняя нагрузка создает относительно рассматриваемого сечения момент, вызывающий сжатие верхних волокон балки (рис. 6.4, а), то в выражении для в этом сечении она дает положительное слагаемое.

Рис. 6.4