Определение коэффициентов теплоотдачи

Страница 2

. (2.11)

Для соответствия выражения (2.11) первому уравнению системы (1.20) добавим и вычтем из (2.11) . В результате простых алгебраических преобразований получим уравнение соответствующее первому уравнению системы (1.20):

png">

. (2.12)

Аналогично поступаем со вторым уравнением системы (2.7). Подставив в него выражения (2.8) и (2.10) получим:

. (2.13)

Для соответствия выражения (2.13) второму уравнению системы (1.20) добавим и вычтем из (2.13) . В результате простых алгебраических преобразований получим уравнение соответствующее второму уравнению системы (1.20):

. (2.14)

Обозначим:

; (2.15)

; (2.16)

; (2.17)

; (2.18)

. (2.19)

Ниже будет показано, что потери в роторе Ррот пропорциональны току статора, что позволяет объединить Рм и Ррот (2.18), Рст и Ррот (2.19).

Выражения (2.15) – (2.19) позволяют определить коэффициенты теплоотдачи и потери, необходимые для построения тепловой модели асинхронного двигателя, используя тепловые сопротивления эквивалентной тепловой схемы двигателя.

2.2.2 Расчет тепловых сопротивлений

Тепловые сопротивления для эквивалентной тепловой схемы рассчитываются по методике, приведенной в [2].

1) Сопротивление аксиальное меди статора (тепловое сопротивление между пазовой и лобовой частями обмотки)

, (2.20)

где lп – длина паза, м;

lл – средняя длина одной лобовой части, м;

λм – коэффициент теплопроводности меди, Вт/(м∙0С);

Fм – площадь поперечного сечения меди в пазу, м2;

Z1 – число пазов статора.

2) Тепловое сопротивление между медью статора и внутренним воздухом

, (2.21)

где R'л,вш – тепловое сопротивление внешней (обращенной к станине) продуваемой лобовой части обмотки, 0С / Вт;

R''л,вш – тепловое сопротивление внешней (обращенной к станине) непродуваемой лобовой части обмотки, 0С / Вт;

R'л,вт – тепловое сопротивление внутренней (обращенной к станине) продуваемой лобовой части обмотки, 0С / Вт;

R''л,вт – тепловое сопротивление внутренней (обращенной к станине) непродуваемой лобовой части обмотки, 0С / Вт.

Тепловое сопротивление между внешней продуваемой лобовой частью обмотки и внутренним воздухом:

, (2.22)

где bп – средняя ширина паза, м;

hп,эф – эффективная по меди высота паза, м;

lл,п – продуваемая длина лобовой части, м;

δокр – толщина окраски лобовых частей, м;

λокр – коэффициент теплопроводности окраски лобовых частей, Вт/(м∙0С);

Z1 – число пазов статора;

λэкв – эквивалентный коэффициент теплопроводности обмотки, Вт/(м∙0С);

αл,вш – коэффициент теплоотдачи внешней поверхности лобовых частей обмотки статора, Вт/(м2∙0С).

Эквивалентный коэффициент теплопроводности обмотки:

, (2.23)

где kз – коэффициент заполнения паза;

dи – диаметр изолированного провода, мм;

kп – коэффициент пропитки обмотки;

Тср – средняя температура обмотки;

λп – коэффициент теплопроводности пропиточного состава;

λи – коэффициент теплопроводности изоляции проводов.

Коэффициент теплоотдачи внешней поверхности лобовых частей обмотки статора:

, (2.24)

где λв – коэффициент теплопроводности воздуха, Вт/(м∙0С);

Dл,вш – внешний диаметр лобовой части, м;

Nuвш – число Нуссельта для внешней поверхности лобовых частей.

Число Нуссельта для внешней поверхности лобовых частей:

Страницы: 1 2 3 4 5 6 7