Кристаллическая структура керамик Tl2Ba2, полученных с использованием высокого давления

Материалы о физике / Кристаллическая структура керамик Tl2Ba2, полученных с использованием высокого давления

Страница 3

Численное изучение самоорганизованного критического состояния в различных моделях гранулярных сверхпроводников было проведено в ряде работ (см. например, [7]), где, в частности, было показано, что вероятностное распределение лавин магнитного потока по размерам имеет скейлинговый характер, характерный для самоорганизации, при этом в системе могут возникать гигантские "лавины", которые в нашем случае представляют собой мощные всплески напряжения в образце.

Для исследования из YBaCuO керамики был изготовлен цилиндрический образец с размерами 15.0 ´ 1.8 мм2, на него была намотана измерительная катушка из 60 витков медного провода, образец располагался в двойном медно-пермаллоевом экране, что позволило избавиться от паразитных электромагнитных наводок и земного магнитного поля и обеспечить охлаждение образца в нулевом поле. Внешнее магнитное поле создавалось соленоидом, запитанным от оригинального высокоточного интегратора, что позволяло получать точную линейную развертку по полю. Для уменьшения паразитных шумов и наводок питание предусилителя и интегратора осуществлялось от аккумуляторных батарей.

Изучаемое напряжение с измерительной катушки через согласующий трансформатор, подавалось на усилитель, фильтр низких частот 6 кГц и плату сбора данных в составе персонального компьютера. Приведенное ко входу усиление составило 3.37×106. Время набора реализации могло доходить до двух часов, в зависимости от постоянной времени интегратора, при этом изменение потока, пересчитанное на площадь образца, составляло величину порядка одного кванта потока в секунду, частота отсчетов составляла 20 кГц. Измерения проводились в атмосфере гелия при температуре жидкого азота. При изменении постоянной времени интегратора проводился отогрев образца и его охлаждение в нулевом поле.

Все измерения проводились в низкополевой области, где критический ток не зависел от магнитного поля.

Скачки магнитного потока, проникающего в образец, детектировались как короткие однополярные всплески индуцированного напряжения в измерительной катушке. Эти всплески отсутствовали выше температуры перехода и в неизменном поле.

Рис.5

Для достоверного определения всплеска ЭДС индукции использовался следующий способ: вся реализация разбивалась на куски длительностью в одну секунду, в каждом куске определялась величина стандартного отклонения, всплеск детектировался по превышению пятикратного стандартного отклонения.

На рис.1 приведен фрагмент просуммированной величины всплесков, которая пропорциональна магнитному потоку, проникшему в образец. Видно, что наблюдаются случайные скачки потока разной амплитуды. На рис.2 приведена гистограмма распределения величины всплесков ЭДС индукции. Видно, что проникновение магнитного потока происходит в виде скачков, имеющих степенное распределение, что является прямым подтверждением существования самоорганизованного критического состояния в джозефсоновской среде.

Рис.6.

В связи с поиском новых материалов для твердотельных газовых сенсоров активно изучается влияние адсорбированных молекул на электрофизические свойства полупроводниковых оксидов SnO2, ZnO, WO3, In2O3, а также сложных соединений, например Cr2-хTi хO3, FeNbO4 и др. Нанокристаллический диоксид олова среди изученных веществ нашел наиболее широкое применение, так как он является широкозонным полупроводником n-типа, вследствие чего электропроводность SnO2 оказывается чрезвычайно чувствительной к состоянию поверхности как раз в той области температур 20 - 500 °С, для которой на поверхности оксидов наблюдаются окислительно-восстановительные реакции [1].

Существенным недостатком газовых сенсоров на основе SnO2 является их низкая селективность. Одним из путей повышения селективности является введение в высокодисперсную оксидную матрицу легирующих добавок, как правило, переходных металлов или их оксидов, которые могут влиять на электронные и каталитические свойства поверхности.

Целью работы является исследование структуры и электрофизических свойств пленок композитов SnOх: MnOу, для использования их в качестве чувствительных элементов датчиков газов.

Для получения композиционных наноструктур на основе диоксида олова был применен метод реактивного ионно-лучевого распыления составной мишени из металлического олова и полосок марганца в атмосфере аргона - кислорода. Напылительная установка была изготовлена на основе вакуумного напылительного поста УВН-2М. Параметры напыленных пленок контролировались общепринятыми методами.

Толщина пленок определялась на интерференционном микроскопе МИИ-4. Электрическое сопротивление измеряли четырехзондовым методом (ЦИУС-4). Концентрацию и подвижность носителей заряда определяли с помощью эффекта Холла по методу Ван дер Пау. Газовая чувствительность пленок измерялась как отношение сопротивления пленки на воздухе (Rв) к сопротивлению пленки при напуске в кювету известной концентрации исследуемого газа (Rг): Sg = Rв/Rг.

Страницы: 1 2 3 4