Конструкция колебательной системы

Материалы о физике / Ультразвук и его применение / Конструкция колебательной системы

Страница 1

При проектировании ультразвуковых колебательных систем для многофункциональных аппаратов необходимо обеспечить увеличение амплитуды колебаний рабочего инструмента не менее чем в 10 раз с помощью концентратора и выполнить требования повышенной компактности. В этом случае, как отмечалось ранее, используются колебательные системы с четвертьволновыми преобразователем и концентратором. Недостатком таких систем является соединение преобразователя (пьезоэлектрического) с концентратором в плоскости наибольших механических напряжений. Этот недостаток устраняется в колебательной системе, выполненной в виде тела вращения, образованного двумя металлическими накладками, между которыми выше узла смещения ультразвуковой волны расположены пьезоэлектрические элементы.

Усиление амплитуды колебаний обеспечивается за счет того, что образующая тела вращения колебательной системы, выполнена в виде непрерывной кривой, например катеноиды, экспоненты и пр., обеспечивающей концентрацию ультразвуковой энергии. При подведении электрического напряжения к электродам пьезоэлементов возникают механические колебания, которые усиливаются за счет выполнения накладок в виде непрерывной кривой, а затем передаются рабочему инструменту.

Оптимальным, с точки зрения обеспечения согласования входного сопротивления активного элемента и сопротивления обрабатываемой среды, является выполнение образующих отражающей и излучающей рабочих накладок в форме тела вращения с образующей, выполненной в виде катеноиды. Коэффициент усиления при этом будет максимальным и может достигать значений, равных:

K = 0.9 ´ N ( при N > 2),

где: N = D/d, D

- максимальный диаметр ( диаметр отражающей накладки), d

- минимальный диаметр (диаметр излучающей рабочей накладки на участке соединения с инструментом).

Для ультразвуковых колебательных систем, выполненных в форме тела вращения с экспоненциальной или конической образующей, коэффициент усиления будет еще меньше.

В рассматриваемой колебательной системе пьезоэлектрические элементы расположены, как отмечалось, выше узла смещения. Расстояние между ними и торцом колебательной системы выбирается таким, чтобы в области размещения пьезоэлементов динамические напряжения имели значения, не превышающие 0.3 Fmax

, что повышает надежность и стабильность системы в работе.

Рассмотрим, можно ли использовать рассмотренную колебательную систему для многофункциональных аппаратов технологического назначения.

Так, например, для получения коэффициента усиления K = 10 при диаметре торцевой поверхности излучающей рабочей накладки равном 10 мм, согласно приведенной выше формуле, необходимо использование тыльной накладки диаметром 90 мм. Такое значительное увеличение габаритов колебательной системы не только приводит к возникновению радиальных колебаний, существенно уменьшающих коэффициент усиления, но и практически не реализуемо вследствие отсутствия пьезоэлектрических элементов больших диаметров (диаметром более 70 мм).

Поэтому приходится выполнять УЗ колебательную систему в виде тела вращения из двух накладок и двух пьезоэлектрических элементов, расположенных между этими накладками, так что образующая тела вращения выполнена в виде непрерывной кусочно-гладкой кривой, состоящей из трех участков. Первый участок - цилиндрический длиной i

1 , второй - экспоненциальный длиной i z

, третий - цилиндрический длиной i 2

. Пьезоэлектрические элементы расположены между экспоненциальным участком и торцом отражающей накладки. Длины участков отвечают следующим условиям:

i 1 = k [ c1/w - 2 h ( с1/с + 1)],

i

z

=

ln

(

N

),

i 2 = k с2/w ,

где с1 , с2- скорости распространения ультразвуковых колебаний в материалах накладок, (м/с), с

- скорость распространения ультразвуковых колебаний в материале пьезоэлемента, [м/с], w /2p

- рабочая частота колебательной системы, [Гц], d

- толщина пьезоэлемента, [м], k

Страницы: 1 2 3