Измерение скорости звука

Страница 2

.

В этой формуле k — некоторая постоянная величина, называемая сжимаемостью газа; чем меньше относительное изменение объема при заданной силе F, тем меньше сжимаемость газа. Из этой формулы следует, что сжимаемость равна относительному изменению объема при изменении давления на единицу. Величина , обратная сжимаемости, называется модулем, или коэффициентом объемной упругости среды, или просто объемной упругостью.

Итак, упругость есть сила, противодействующая сжатию воздуха. Внешнее давление, под которым воздух находится, сближает частицы воздуха, сила же упругости стремится его расширить. При равенстве этих сил воздух находится в равновесии. Внешнее давление, таким образом, служит мерой упругости, и упругость воздуха, как и других газов, численно равна абсолютной величине давления, которое газ оказывает на единицу поверхности, т. е. на 1 см2. Формулу для скорости звука можно поэтому записать в виде

В этой формуле Р — давление на уровне моря при 0°С. Оно равно 1033,6 Г/см2 и должно быть представлено в абсолютных единицах. Вспомним, что в механике за единицу силы принимают силу, сообщающую массе в 1 г ускорение в 1 см/сек2. Эта единица силы называется диной. Так как по закону Ньютона сила равна массе, умноженной на ускорение, а ускорение силы тяжести равно 980,6 см/сек2, то сила, с которой земля притягивает 1 г, равна 980,6 абс. единиц. Таким образом, атмосферное давление Р, выраженное в абсолютных единицах, будет равно 1033,6×980,6 = 1013500 абс. единиц. Абсолютная единица давления называется б а р о м. Бар — это давление силы в 1 дину на 1 см2.

Что касается плотности воздуха , то при температуре 0°С и нормальном атмосферном давлении эта плотность, т. е. масса 1 см3, выраженная в граммах, равна 0,001293. Если подставить эти значения для Р и в последнюю формулу, то окажется, что скорость звука равна 280 м/сек. Такое значение для с теоретически впервые получил Ньютон. Эта величина намного отличается от той скорости, с которой действительно распространяется звук в воздухе, равной, как мы уже указывали, 331,5 м/сек при 0°С.

Дело в том, что в нашем рассуждении при обосновании этой формулы мы не учитывали одного обстоятельства. При сжатии воздуха увеличивается давление и, следовательно, растет упругость воздуха. Но, кроме этого, воздух, как и всякий газ, при сжатии нагревается, а при разрежении охлаждается. Изменение температуры воздуха приводит к добавочному изменению его упругости; при сжатии за счет повышения температуры упругость несколько возрастает, при разрежении — несколько уменьшается.

Добавочное изменение упругости воздуха при сжатии может, конечно, получиться только в том случае, если сжатие происходит так, что выделившееся тепло не успевает уйти. Точно так же, если быстро произвести разрежение, получившаяся разность в температуре не успеет выровняться. Такой процесс, при котором не происходит обмена теплом с окружающей средой, называется адиабатическим процессом. Когда происходит выравнивание температуры (т.е. когда температура постоянна), процесс называется изотермическим.

В предыдущем рассуждении мы принимали во внимание только изменение упругости за счет сжатий и разрежений воздуха, но упустили из виду, что эти сжатия и разрежения сопровождаются изменениями температуры. Изменения же температуры, как мы видим, приводят к добавочному изменению упругости воздуха. На это обстоятельство впервые указал Лаплас.

Лаплас показал, что отношение величины упругости при адиабатическом сжатии к величине упругости при медленном сжатии, когда температура сжатого воздуха успевает выровняться с температурой окружающей среды, равно отношению количеств тепла, необходимых для нагревания единицы массы воздуха на 1°С при постоянном давлении и при постоянном объеме. Это отношение называется отношением теплоемкостей при постоянном давлении ср и при постоянном объеме . Для воздуха .Если мы учтем эти добавочные изменения упругости воздуха, то формула для скорости звука запишется в виде:

Страницы: 1 2 3