Исследование переходных процессов в электрических цепях, содержащих конденсатор и сопротивление

Материалы о физике / Электрические цепи постоянного и переменного тока / Исследование переходных процессов в электрических цепях, содержащих конденсатор и сопротивление

Страница 1

Цепь с последовательно включенными конденсатором емкостью С = 50 мкФ и сопротивлением R = 10 КОм подсоединяется к источнику постоянного напряжения U = 50 В (переключатель в положении 1). Определить законы изменения переходных напряжений и тока при заряде конденсатора и построить их графики. Затем цепь отключается от источника и одновременно переключатель переводится в положение 2. Определить законы изменения переходных напряжений и тока при разряде конденсатора и построить их графики. Определить фактическую длительность заряда и разряда конденсатора и энергию электрического поля при 1 = Зτ. Схема цепи приведена на рис. 2.6.

Дано:

С = 50 мкФ,

R = 10 КОм,

U = 50 В.

Определить: i=f(t),t; uc=f(t),W.

рис 2.6

1) Переключатель в положении 1 (заряд конденсатора)

τ =RּC=104ּ50ּ16-6=0,5c

На основании второго закона коммутации получены законы, характеризующие напряжение и ток при заряде конденсатора.

где U – напряжение источника

uуст=U – установившееся значение напряжения при заряде конденсатора

– свободная составляющая напряжения при заряде конденсатора.

Зарядный ток равен свободной составляющей, т.к. ток установившегося режима равен 0(iуст=0).

Длительность заряда конденсатора:

t=5τ=5ּ0,5=2,5 с.

Вычисляем значение напряжения на конденсаторе при его заряде для значений времени t=0, τ, 2τ, 3τ, 4τ, 5τ.

t=0, В;

t=τ, B;

t=2τ, B;

t=3τ, B;

t=4τ, B;

t=5τ, B.

Аналогично вычисляем значения зарядного тока согласно закону изменения переходного тока при заряде конденсатора для значений времени t=0, τ, 2τ, 3τ, 4τ, 5τ.

t, c

0

τ

i, мкА

25

9,19

3,38

1,24

0,46

0,17

Согласно полученным результатам строим графики зарядного напряжения и тока в зависимости от τ. (рис 2.7)

рис 2.7

Из построенных графиков u(t) и i(t) можно для любого момента времени определить значение u и i, а также рассчитать запасенную энергию в электрическом поле заряженного конденсатора.

Например, при t=3τ:

Дж.

2) Переключатель в положении 2 (разряд конденсатора).

Быстрота разряда конденсатора также зависит от параметров цепи и характеризуется постоянной времени, разряда конденсатора:

τ =RC=104ּ50ּ10-6=0,5 с

На основании второго закона коммутации получены законы, характеризующие напряжение и ток при разряде конденсатора:

где U – напряжение заряженного конденсатора до начала разряда.

Разрядные напряжения и ток равны их свободным составляющим, т.к. напряжение и ток установившегося режима после разряда равны 0 (uc уст=0, iуст=0).

Длительность разряда конденсатора:

t=5τ=0,5ּ5=2,5 с.

Вычисляем значения напряжения конденсатора при его разряде для, значений времени t=0, τ, 2τ, 3τ, 4τ, 5τ.

Страницы: 1 2