Гистерезисные явления в ферромагнетиках
* В таблице приведены весовые проценты
Если циклическое перемагничивание осуществляется при максимальном значении поля, меньшем поля насыщения, то гистерезисные явления протекают еще более сложно.
Пусть при напряжении поля Н1 намагниченность ферромагнитного образца соответствует точке а на рисунке 15. Поскольку поле меньше поля насыщения, то и намагниченность J будет меньше Js.
Если теперь плавно уменьшить поле до –Н1, то намагниченность будет изменяться по кривой аб, и при повторном возрастании поля до Н1, намагниченность, как правило, не совпадает с точкой а, а будет иметь несколько большее значение, изображенное на рисунке точкой в. Полученная незамкнутая петля носит название неустановившейся петли гистерезиса.
При повторных циклах картина будет повторяться, но при одинаковых значениях поля расхождения в значениях намагниченности будет все меньше и, наконец, при многократном циклическом изменении поля намагниченность будет описывать замкнутую кривую, которая называется симметричной петлей гистерезиса. На рисунке16 представлено семейство симметричных петель гистерезиса, соответствующих различным значениям поля. Как видно из рисунка, предельная петля гистерезиса является симметричной петлей, соответствующей значениям намагниченности насыщения.
Рисунок 15 - Неустановившаяся петля гистерезиса.
Рисунок 16 - Семейство симметричных петель гистерезиса.
Для получения симметричной петли обычно достаточно провести около десяти перемагничивающих циклов. Если поле периодически меняется не относительно своего нулевого значения, а от Н1 до Н2 и обратно (рисунок 17), то намагниченность описывает замкнутую кривую аба, называемую частным гистерезисным циклом.
Рисунок 17 - Частный гистерезисный цикл.
Гистерезисные явления свидетельствуют о наличии необратимых процессов, которые протекают в ферромагнетике при наложении на него изменяющегося магнитного поля. Ферромагнетик, как правило, находится при этом не в равновесном состоянии, соответствующем минимуму свободной энергии при данной напряженности магнитного поля и температуре. Однако есть ряд приемов, позволяющих снять кривые намагничивания, которые при циклическом изменении поля не дают гистерезисной петли. Такие кривые носят название безгистерезисных или идеальных кривых намагничивания и соответствуют минимуму свободной энергии.
На рисунке 18 показана обычная (первичная) кривая намагничивания (кривая 1) и идеальная безгистерезисная кривая (кривая 2). Продолженная в область отрицательных полей идеальная кривая при циклическом изменении поля не дает петли. Безгистерезисная кривая может быть получена различным образом. Наиболее распространенный способ заключается в следующем. На ферромагнитый образец накладывается некоторое небольшое постоянное магнитное поле Н1 и переменное поле низкой частоты, амплитуда которого превышает поле насыщения, затем амплитуду переменного поля медленно сводят к нулю, фиксируя при этом значение намагниченности J1.
Рисунок 18 - Первичная (1) и идеальная (2) кривые намагничевания.
Безгистерезисную кривую намагничивания можно получить еще и таким образом. На ферромагнитный образец накладывается магнитное поле Н1, после чего ферромагнетик нагревается до температуры выше точки Кюри и медленно охлаждается до исходной температуры; значение намагниченности J1 фиксируется. Затем поле увеличивается до некоторого значения Н2, образец вновь нагревается выше точки Кюри, охлаждается до исходной температуры и вновь измеряется намагниченность J2 и т.д.
Совокупность точек, соответствующих намагниченностям J1, J2 и т.д. (при намагничивающих полях Н1, Н2 и т.д.), дает безгистерезисную кривую намагниченности. Иногда удается получить безгистерезисную кривую наложением периодических напряжений. Следует отметить, что идеальная кривая, снята вторым способом – методом «температурной тряски», всегда идет выше безгистерезисной кривой, полученной другими способами [7, с.50-55].