Физический механизм молекулярного поглощения
.
Если под действием давления поверхность S элемента объема переместится на расстояние, то тогда работа А будет равна:
.
На диаграмме работа изобразится площадью, лежащей под отрезками 1 – 2 и 3 – 4. Разность этих площадей, т.е. площадь замкнутого цикла, представляет поэтому работу, производимую элементом объема газа.
Эта работа совершается за счет энергии звуковой волны и идет на нагревание газа, чем вносится добавочное поглощение звука.
Таким образом, благодаря перераспределениям энергии между внешними и внутренними степенями свободы молекул в многоатомных газах, происходящим из-за сжатий и разрежений, вызываемых звуковыми волнами, возникает поглощение звука. Это поглощение называют молекулярным поглощением. Максимум молекулярного поглощения совпадает с максимумом дисперсии, т. е. имеет место при частоте ультразвука (период звуковой волны совпадает с временем релаксации ).
Дисперсия ультразвука в многоатомных газах.
Мы говорили выше, что кинетическая энергия движения молекул газа пропорциональна температуре; чем выше температура газа, тем с большей скоростью движутся молекулы.
Теплоемкость при постоянном объеме есть количество тепла, необходимое для того, чтобы нагреть молярный объем газа на 1°С, поддерживая объем постоянным. Поэтому есть не что иное, как приращение энергии объема газа при изменении температуры на 1°С. Подобно тому как полная энергия Е представляет собой сумму энергий внешних степеней свободы Еk, (энергия поступательного движения молекул) и внутренних степеней свободы Ei (энергия колебательных и вращательных движений молекул), так и теплоемкость будет суммой теплоемкостей — внешних и — внутренних степеней свободы молекул объема, занимаемого одним молем:
.
При низких частотах звуковых волн процесс сжатий и разрежений элемента объема газа происходит настолько медленно, что установление равновесия между возбужденными и невозбужденпыми молекулами успевает следовать за колебаниями давления в звуковой волне; время релаксации - гораздо меньше периода звуковой волны . В этом случае скорость звука определяется известной нам формулой
.
Между и , имеется важное соотношение:
- = R,