Акустооптическая дифракция
Где k и K — волновой вектор света и звука соответственно, с — скорость. Света в вакууме, n — показатель преломления для световой волны, L — длина взаимодействия в направлении на 1-й дифракционный максимум. (рис.).
С квантово-механической точки зрения резонансная дифракция представляет собой процесс поглощения (испускания) акустического фонона фотоном и образования рассеянного фотона с частотой ω' и волновым вектором k'. Условие резонансной дифракции эквивалентно закону сохранения энергии — импульса (так называемое условие синхронизма):
Поскольку частота света при рассеянии практически не изменяется (так как, Ω<<ω0), то в изотропной среде k'≈k. Условие возникновения и характер резонансной дифракция света на ультразвуке зависят от соотношения между длинами волн света Ω и звука Λ. Для низкочастотного звука, длина волны которого удовлетворяет условию αL/Λ2<<1, резонансная дифракция имеет место при нормальном падении cвета на звуковой пучок. Это так называемая Дифракция Рамана—Ната. В этом случае световая волна проходит сквозь звуковой пучок не отражаясь, а периодическое изменение n под действием УЗ приводит к периодическому изменению фазы прошедшей световой волны. На выходе плоская волна оказывается фазомодулированной: её волновой фронт становится «гофрированным» (рис.).
Такая волна эквивалентна значительному числу плоских волн, распространяющихся под малыми углами к проходящему световому пучку. Действительно, условие резонансной дифракции выполняется одновременно для большого числа порядков дифракции, и при достаточной длине взаимодействия L возникает многократное рассеяние фотона на фононах. Соответственно при выходе из области акустооптического взаимодействия световой луч разбивается на серию лучей с частотами ωm = ωm + mΩ, m = o,±1,±2 ., идущих по различным направлениям, определяемым соотношением:
Интенсивность излучения света в m-й дифракционный максимум выражается формулой:
Где Jm — функция Бесселя 1-го рода m-го порядка, Iзв = рс3S2 — интенсивность звука, р — плотность материала, с — скорость звука в нём, S — амплитуда деформации в звуковой волне, α0 — длина световой волны в вакууме. Величина
где ε0 и ε — диэлектрическая проницаемость невозмущённой и возмущённой среды соответственно, S — деформация среды) называется Упругооптической постоянной материала, или постоянной Поккельса, а величина M2=p2n6/ρc3 . Акустооптическим качеством материала и является основной характеристикой его акустооптических свойств. При достаточной длине взаимодействия L и интенсивности звука Iзв амплитуда дифрагированного света сравнивается c амплитудой падающего. С увеличением длины L (равной в этом случае толщине звукового пучка D) или амплитуды деформации S0 интенсивности как проходящего света, так и света, отклонённого в различные порядки дифракции, осциллируют (рис.), причём амплитуда осцилляции постепенно уменьшается, так как энергия падающего излучения распределяется среди всё возрастающего числа дифракционных максимумов.